BRIEF COMMUNICATIONS

Phase Equilibrium Study of the $LiV_2O_5 - V_2O_4 - V_2O_5$ System at 923 K: A Series of Lithium Vanadium Bronzes, $Li_xV_{6n}O_{15n-m}$

EIJI TAKAYAMA-MUROMACHI* AND KATSUO KATO

National Institute for Research in Inorganic Materials, 1-1 Namiki, Sakura, Niihari, Ibaraki, 305 Japan

Received September 17, 1986; in revised form January 28, 1987

Introduction

The lithium vanadium bronzes, $\text{Li}_x \text{V}_2 \text{O}_5$ ($0 < x \leq 1$), occur as a series of nonstoichiometric phases, α ($0 < x \leq 0.04$), β ($0.22 \leq x \leq 0.37$), β' ($0.44 \leq x \leq 0.49$), and γ ($0.88 \leq x \leq 1$) (1, 2), and the κ phase, Li_{1+x} V₃O₈, in the oxygen-rich region (3). The crystal structures of all these phases are known. The structure of the α phase is based on that of parent oxide V₂O₅, with lithium ions inserted between V₂O₅ layers (4), whereas in β - and β' -Li_xV₂O₅ (1, 2) and γ -Li_xV₂O₅ (5), major structural rearrangements of the V₂O₅ framework occur.

Compared to the Li_xV₂O₅ system, very little is known about the oxygen-poor region of the Li₂O-V₂O₄-V₂O₅ system. Although two phases, Li_xV₃₀O_{71+y} (1.5 $\leq x \leq$ 3 and 0 $\leq y \leq$ 1.8) (6) and Li₂V₁₂O₂₉ (7), have been reported, they have yet to be confirmed. It has been suggested that the β phase can contain a large amount of oxygen defects (8, 9). This point should be clarified as the β phase has attracted great attention because of its interesting properties as a

o. tai 274

electronic and lithium ionic conductor (8-12).

Experiment

Vanadium pentoxide (99.99%) and lithium carbonate (99.99%) were used as starting materials. Prior to use, they were dried by heating at 773 K for 1 day. Lithium metavanadate, LiVO₃, was prepared by heating an equimolar mixture of Li₂CO₃ and V_2O_5 at 873 K for 5 days with intermediate grinding. In the phase equilibrium experiment, we used VO_2 and LiV_2O_5 rather than V_2O_3 and LiVO₃ to minimize weighing errors and adsorption of water. By reducing V₂O₅ in hydrogen at 1023 K, V₂O₃ was obtained; this was mixed with V₂O₅ in equimolar ratio. The mixture was sealed in evacuated silica tubes and fired at 1123 K for 5 days to get VO_2 . The stoichiometric lithium vanadium bronze LiV₂O₅ was also prepared by the silica tube method according to the reaction, $LiVO_3 + VO_2 = LiV_2$ O_5 . The three compounds, V_2O_5 , VO_2 , and LiV_2O_5 , thus obtained were mixed under acetone in the desired ratio in an agate mortar. After drying in nitrogen at 423 K for a

0022-4596/87 \$3.00 Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} To whom all correspondence should be addressed.

FIG. 1. Phase diagram of the $LiV_2O_5-V_2O_4-V_2O_5$ system at 923 K. A, α -Li_xV₂O₅; B, β -Li_xV₂O₅; C, β' -Li_xV₂O₅; D, γ -Li_xV₂O₅; E, β -Li_xV₉O₂₂; F, β' -Li_xV₉O₂₂; G, β -Li_xV₁₂O₂₉; H, β' -Li_xV₁₂O₂₉. Open circle indicates an experimental point.

few hours, about 3 g of the mixture was sealed in a silica tube. The mix was preheated at 873 K for 1 day in a box-type furnace, then heated at 923 ± 2 K for 48-72hr, and quenched to room temperature. The product was examined by powder X-ray diffractometry using CuK α radiation. This procedure was repeated until the powder X-ray pattern of the sample did not change. However, the reaction rate was usually large enough for the sample to reach steady state after the first heating. About 70 mixes of different ratios were examined (see Fig. 1).

Single crystals of compounds found for the first time in the present work were prepared by chemical transport method, using HCl gas as a carrier, and the crystals were characterized by Weissenberg photography.

Results and Discussion

The phase diagram determined in the present study is shown in Fig. 1. Ranges of composition for α -, β -, β' -, and γ -Li_xV₂O₅ were taken from earlier works (1, 2). Four

new bronzes were also found in the system. Single crystal structure analysis were done for these phases (13, 14). From the structure analysis and powder X-ray data, the compositions of these compounds were determined to be β -Li_xV₉O₂₂ (0.90 $\leq x \leq$ 1.35), β' -Li_xV₉O₂₂ (1.65 $\leq x \leq$ 1.85), β -Li_x V₁₂O₂₉ (1.05 $\leq x \leq$ 1.80), and β' -Li_xV₁₂O₂₉ (2.05 $\leq x \leq$ 2.15). The prefixes, β and β' are used because of the close relation of these compounds to β - and β' -Li_xV₂O₅.

The vanadium bronze, β -Li_xV₂O₅, is isostructural with β -Na_xV₂O₅ (15); it has a layered structure (space group C2/m) (1, 2). The vanadium-oxygen array (Fig. 2a) consists of V₆O₁₅ layers parallel to (100); each layer is translated along Y by b/2 relative to the adjacent layers, which are linked to

FIG. 2. Projection of the β - and β' -Li_xV₆₀O_{15n-m} structure onto a (010) plane (1, 2, 13, 14).

each other by one oxygen ion per unit cell. This feature of the structure is schematically shown in upper part of Fig. 2a. Lithium ions occupy 7-fold sites in tunnels between two layers in β -Li_xV₂O₅. In β' -Li_xV₂O₅, the vanadium-oxygen array is similar to that of β -Li_xV₂O₅, except the lithium ions occupy tetrahedral sites within the tunnels (1, 2).

Vanadium-oxygen arrangements and schematic representations of them for Li_x V_9O_{22} and $Li_xV_{12}O_{29}$ are shown in Figs. 2b and 2c. The vanadium-oxygen framework is similar in the β and β' phases for both Li_x V_9O_{22} and $Li_xV_{12}O_{29}$, as well as in β - and β' - $\text{Li}_{x}\text{V}_{2}\text{O}_{5}$. $\text{Li}_{x}\text{V}_{9}\text{O}_{22}$ has space group $P2_{1}/m$, whereas $Li_x V_{12}O_{29}$ has space group C2/m(13). The structure of $Li_x V_9 O_{22}$ consists of two kinds of layers parallel to (100). One layer is similar to that of β - and β' -Li_xV₂O₅, whereas the other layer has the composition $V_6O_{14.5}$ and is linked to an adjacent layer by two oxygen atoms per unit cell. The two layers connected by two oxygen atoms are not glide-related along Y. In Li_x

FIG. 3. Lattice parameters versus x for the system $Li_xV_9O_{22}$.

TABLE I

Compound				
	a (Å)	b (Å)	c (Å)	β (deg)
β -Li _{0.3} V ₂ O ₅ ^a	15.464(6)	3.599(2)	10.068(6)	110.9(1)
B'-Lin 48 V2O54	15.266(6)	3.618(2)	10.100(6)	107.7(1)
B-Li, V,O22	21.813(2)	3.6037(4)	10.095(1)	105.31(1)
B'-Li1 7V.O.22	21.601(2)	3.6220(7)	10.125(1)	102.57(1)
B-Li1 V12O29	28.204(2)	3.6074(3)	10.114(1)	102.09(1)
$\beta' - Li_{2.1}V_{12}O_{29}$	28.016(2)	3.6203(4)	10.121(1)	100.02(1)

LATTICE PARAMETERS OF LixV6nO15n-m

^a From Ref. (2).

 $V_{12}O_{29}$, the structure consists of one kind of layers which are similar to the $V_6O_{14.5}$ layer of $Li_xV_9O_{22}$.

There are two kinds of tunnels in which lithium atoms are located in both Li_xV₉O₂₂ and Li_xV₁₂O₂₉, denoted A and B in Figs. 2b and 2c. Tunnel A is very similar to that of β - and β' -Li_xV₂O₅. Although we have to wait for final refinement of the structure analysis to determine the position of lithium ions within these tunnels, preliminary analysis shows that the difference between β and β' phase in Li_xV₉O₂₂ and Li_xV₁₂O₂₉ comes from the difference in position of the lithium ions within tunnel A, as occurs in β and β' -Li_xV₂O₅. The compounds found in the present work, including β - and β' -Li_xV₂ O₅, may be represented by the general formula, β - or β' -Li_xV_{6n}O_{15n-m} ($n \ge m$). Indeed, $Li_{x}V_{2}O_{5}$, $Li_{x}V_{9}O_{22}$, and $Li_{x}V_{12}O_{29}(n, n)$ m) correspond to (1/3, 0), (3/2, 1/2), and (2, 1/2), and (2, 1/2), and (3/2, 1/2). 1), respectively. However, only these three combinations occur at 923 K; other combinations might be possible at different temperatures.

Figures 3 and 4 indicate variations of lattice parameters with x for the $\text{Li}_x V_9 O_{22}$ and $\text{Li}_x V_{12} O_{29}$ systems, respectively. Table I shows lattice parameters of representative compounds. These systems show abrupt changes in lattice constants across the twophase region of $\beta + \beta'$; the *a* cell dimension decreases considerably in the β' phase in both systems. A similar tendency has been observed in β - and $\beta' - \text{Li}_x V_2 O_5$ (1, 2).

FIG. 4. Lattice parameters versus x for the system $Li_xV_{12}O_{29}$.

Laitinen and Rhodes reported the bronze $Li_2V_{12}O_{29}$, prepared by electrolysis of a melt of V_2O_5 in KCl–LiCl eutectic (7). Except for lithium content, the composition is identical to that of $Li_xV_{12}O_{29}$ found in the present work; however, the powder X-ray patterns are different. Also, we did not find the compound $Li_xV_{30}O_{71+y}$.

Early reports (8, 9) suggested the existence of a homogeneity region with respect to the oxygen in the " β -Li_xV₂O₅" phase; thus this phase could contain oxygen defects, as expressed by Li_xV₂O_{5-y} ($0 \le y \le$ 0.2) (9). We did not find any evidence for such high oxygen deficiency in the present work. It is notable that the composition of Li_xV₁₂O₂₉ (convertible to Li_xV₂O_{4.83}) is very close to the limit composition of the above formula. Moreover, when we made β -Li_xV₂ O₅ in an open system under purified nitrogen flow, the sample was sometimes reduced, to give Li_xV₉O₂₂ or Li_xV₁₂O₂₉ (or a mixture of them) rather than β -Li_xV₂O₅. As the powder X-ray pattern of β - (or β' -) Li_x V₂O₅ resembles that of Li_xV₉O₂₂ or Li_xV₁₂ O₂₉, it is easily to misidentify these phases. At least, it can be concluded that even if β -Li_xV₂O₅ could contain oxygen defects, the upper limit of y in the above formula is small. We suggest that the results of early experiments on β -Li_xV₂O₅ prepared in open systems are questionable.

References

- 1. J. GALY, J. DARRIET, A. CASALOT, AND J. B. GOODENOUGH, J. Solid State Chem. 1, 339 (1970).
- 2. J. DARRIET, Thesis, Univ. Bordeaux I (1971).
- 3. A. D. WADSLEY, Acta Crystallogr. 10, 261 (1957).
- 4. A. HARDY, J. GARY, A. CASALOT, AND M. POUCHARD, Bull. Soc. Chim. Fr. 4, 1056 (1965).
- 5. J. GARY AND A. HARDY, Acta Crystallogr. 19, 432 (1965).
- 6. V. L. VOLKOV, Russ. J. Inorg. Chem. 28, 265 (1983). [English trans]
- H. LAITINEN AND D. RHODES, J. Electrochem. Soc. 109, 413 (1962).
- 8. V. K. KAPUSTKIN, V. L. VOLKOV, AND A. A. FOTIEV, J. Solid State Chem. 19, 359 (1976).
- 9. A. V. POPOV, Y. G. METLIN, AND Y. D. TRE-TYAKOV, J. Solid State Chem. 31, 23 (1980).
- A. V. POPOV, Y. G. METLIN, AND Y. D. TRE-TYAKOV, J. Solid State Chem. 32, 343 (1980).
- P. G. DICKENS, S. J. FRENCH, A. T. HIGHT, M. F. PYE, AND G. J. REYNOLDS, Solid State Ionics 2, 27 (1981).
- Y. D. TRETYAKOV, A. V. POPOV, AND Y. D. METLIN, Solid State Ionics 17, 265 (1985).
- 13. K. KATO AND E. TAKAYAMA-MUROMACHI, Naturwissenschaften 73, 499 (1986).
- 14. K. KATO AND E. TAKAYAMA-MUROMACHI, Acta Crystallogr. C, in press.
- 15. A. D. WADSLEY, Acta Crystallogr. 8, 695 (1955).